Exploiting Correcting Codes: On
the Effectiveness of ECC Memory
Against Rowhammer attack

A Practical ECCploit solution

©® Prerequisite
1. Knowledge of ECC function
2. A side channel to observe bit flips

3. Ability to control/compose bit flips via data patterns in aggressor rows

-> end-to-end Rowhammer exploits on ECC-equipped systems

ECCploit three phases

@ First, template memory to find correctable bits

& Second, try to combine multiple of these bit flips = Create error patterns that the
ECC function cannot detect

& Finally, use these patterns to launch exploits

©® Page table entries

& RSA public keys

Which

¢ Binary code

victims?

ID

AMD-1
Intel-1
Intel-2
Intel-3

TABLE I. Target systems.

Manufacturer

AMD
Intel
Intel
Intel

CPU model

Opteron 6376

Xeon E3-1270 v3
Xeon E5-2650 vl
Xeon E5-2620 vl

Microarchitecture

Bulldozer (15h)
Haswell

Sandy Bridge

Sandy Bridge

A. Templating correctable errors

A. Templating
correctable errors

2 B no error
® Templating phase = B corrected ECC error ~
8_ -
x
v
P b f # 0 -t gl . ..-.. . l ansd . omam. A o V... 2. I-I.L‘--.I.LIL UL P |
- Probe memory to see if we can) S > & O o O O
s : S <°°>"’¢’ o °> °>°’°’ oa"’q & S N P °>°’° &° b& bQQ’ & &
safely trigger bit flips using NN AN N N R A R A WA AT AN AR
CycleEount X10500"
Rowhammer

Fig. 3: ECC memory access time distribution across 3K aggressor-victim pairs
for corrupted vs. uncorrupted data.

- Only cause error that ECC
function can correct

automaticall
Y Observe bit flips through side channel

A-1. Target address selection

& A double-sided Rowhammer : 2 aggressor rows targeting | victim row between

& Start with a list of potential aggressor locations(al, a2) and victim addresses(v)
(Same bank, different rows)
Mapping between virtual and physical address(use existing reverse engineering)

However, still can attack without this information

A-2. Pattern selection

& Detect usable tuples of aggressor-victim-aggressor(al, v, a2)

& Crash-free templating strategy (only make correctable ECC errors)

Hamming distance < number of errors E that ECC algorithm can correct

& Check for directions in the bit flip(O->1 or 1->0) due to resulting

striping patterns

Striping patterns?

¢ 4 possible data patterns

1. 0/1-stripe
2. 1/0- stripe
3. O-uniform

4. 1-uniform

A-3. Search strategy

& Target all the words 1n the victim row at the same time during each hammering
attempt

“ifthe ECC corrects single bit errors, we hammer first with bit patterns in the
aggressor and victim rows such that aggressors and victim differ only in the most
significant bit of each of the ECC word in the row, then with patterns that differ only
in the next bit and so on..”

I T I I
) N I
I] I I
128 8] 136] 63%

ECC word?

+ control bit/ data bit

A-3. Search strategy

¢ Read from the entire victim row at once (for each trial)
& Use side channel to detect bit flips anywhere in the row

& Exploits composability of bit flips (batch processing) -> efficient templating

A-3. Search strategy

& If detect bit flips, hammer tuple a few more times -> Identify flipping ECC words

& (pseudo) binary search :omit stripe patterns in words we are not testing

: until reproduce the bit flips on one or more words

& repeat the entire process twice for each tuple (2 possible stripe patterns)

identify vulnerable bits in both directions (1->0 or 0->1) for all tuples in memory

A-3. Search strategy

® Note down all the vulnerable 1-bit templates with
corresponding (al, v, a2) tuple

- ECC word
word offset

direction of the bit flip in the victim row

B. Combining bit tlips

B. Combining bit flips

® What we know: ECC algorithm, 1-bit templates(inducing correctable bit flips)

® Goal: Combine multiple bit flips in a single ECC word

- Produce new words that escape ECC detection

B. Combining bit tlips

& Step

1. group together all the 1-bit templates(with same aggressor rows, victim row,
direction, ECC word) in a template group

2. Generate possible flipped words (induced via Rowhammer) that that bypass the
target ECC algorithm

¢ Combination of k 1-bit templates that would
What’s in induce k bit flips that result in

template group [P4] corruption ECC does not correct
[P1], [P2], [P3] ECC does not detect

TABLE V: Error patterns that can circumvent ECC.

ID Pattern Config. # flips Flips location
AMD-1 [P4] [deal 3-BF-16 3 symbols, 1 in control bits

AMD-1 [P2] [deal 4-BF-16 Min. 2 symbols
Intel-1 [P3] [deal 4-BF-8 Min. 2 symbols
Intel-1 (P4l Default 2-BF-8 Min. 2 symbols

Exploitable patterns (AMD-1)

& [P1] attacker requires at least 3 bit flips in 16 bytes(i.e., ECC word)
1 of the bit flips is in the control bit

other 2 bits flips in 2 distinct symbols (at least 8 bits apart)

& [P2] targeting data bits alone, 4 bit flips in at least 2 distinct symbols in an ECC

word

Exploitable patterns (Intel-1)

® [P3] 4 bit flips in at least 2 distinct symbols (i.e., 4 bits apart)

& [P4] 2 bit flips in distinct symbols in an ECC word (uncorrectable errors -> but X
crash in intel)

Results of
templating
step

Overall 265 templates available

(without ECC 1 minute)

8 weeks 6 days 4 hours

= + Perrow «: Per word === Direct

Time

1w, 20h 4w, 4d 5w, 4d
g TR A e \l """"" 1_ “““ -y 16W, 3d
o A m T T T . =z ool : 1w, 4d
r 3 -l-;|l|-)l-' "'.""."
'E I;%.\.,.L!........E3d'8h.. :'\4059 -y 1d 3h

Lol L __________ : __________ l - :? 10s
0 5 100 1\50 \200 250
#Unique templates

Fig. 6: Templating with ECC memory.

Conclusion of templating

& “Attacker can run code on demand on the victim machine and complete a
templating step of hours or even days in complete isolation without interfering with
the rest of the system”

& After templating, similar to existing non-ECC exploits

C. Exploitation

C. Exploitation
® What we have: ECC-aware templates

& Steps of practical exploit
1. Massaging the target data onto the vulnerable location
2. Setting the corresponding aggressor bit values as dictated by templates

3. Hammering to reliably reproduce the (composed) bit flips on the victim data

Key difference ot ECCploit(Challenge)

& Difference/challenge with existing Rowhammer exploits

1. The number of useful templates is much lower
(template: combination of bit flips to bypass ECC)

2. ECC templates corrupt multiple bits = complicate existing Rowhammer attacks

C-1. Page Table Entry(PTE) ECCploit (Result)

® 6.15% of 265 templates are exploitable (rest crash system)
® Success rate (even with imperfect page table spraying strategy)
- 39.9% map unauthorized memory pages

-2.5% with page table page

¢ Fails to modify any PTE
victim PTE does not always have the target bits set in the direction of chosen template

5% success of similar non-ECC (. ECCploit strategy little impact on success)

C-2. RSA ECCploit (Result)

® 1337 randomly generated RSA keys (1024, 2048, 4096bit)
® 265 templates could only mutate given

1024 bit key 2.8 times

2048 bit key 5.5 times

4096 bit key 9.4 times
& Factorization

45.1% 1024 bit keys

37% 2048 bit keys

28.7% 4096 bit keys

C-3. Opcode modification ECCploit (Result)

& Template #36 flips bit 0 and 5 of a single byte changing
conditional branch instruction=> mov instruction

(inst jne $8fa0 at offset 0xbdc0) to (0x1da (%rbp), %eax))

Conclusion

It’s harder but possible!

For more details....

https: medium.com @Anna IT rowhammer-&54 -l & =-2| t-ecc-MH| 2 2| 2| -& I} =-error-

correcting-codel2|- A A AZS

https://medium.com/@Anna_IT/rowhammer-%EA%B3%B5%EA%B2%A9-%EB%8C%80%EC%9D%91%EC%9D%84-%EC%9C%84%ED%95%9C-ecc-%EB%A9%94%EB%AA%A8%EB%A6%AC%EC%9D%98-%ED%9A%A8%EA%B3%BC%EB%8A%94-error-correcting-code%EC%9D%98-%EC%8B%A4%ED%9A%A8%EC%84%B1-%EA%B2%80%EC%A6%9D-36856febbb57

